Bayesian Simultaneous Intervals for Small Areas: An Application to Variation in Maps

ثبت نشده
چکیده

Bayesian inference about small areas is of considerable current interest, and simultaneous intervals for the parameters for the areas are needed because these parameters are correlated. This is not usually pursued because with many areas the problem becomes difficult. We describe a method for finding simultaneous credible intervals for a relatively large number of parameters, each corresponding to a single area. Our method is model based, it uses a hierarchical Bayesian model, and it starts with either the 100(1 − α)% (e.g., α = .05 for 95%) credible interval or highest posterior density (HPD) interval for each area. As in the construction of the HPD interval, our method is the result of the solution of two simultaneous equations, an equation that accounts for the probability content, 100(1 − α)% of all the intervals combined, and an equation that contains an optimality condition like the “equal ordinates” condition in the HPD interval. We compare our method with one based on a nonparametric method, which as expected under a parametric model, does not perform as well as ours, but is a good competitor. We illustrate our method and compare it with the nonparametric method using an example on disease mapping which utilizes a standard Poisson regression model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Simultaneous Intervals for Small Areas: An Application to Variation in Maps

Bayesian inference about small areas is of considerable current interest, and simultaneous intervals for the parameters for the areas are needed because these parameters are correlated. This is not usually pursued because with many areas the problem becomes difficult. We describe a method for finding simultaneous credible intervals for a relatively large number of parameters, each corresponding...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Application of Bayesian decision making tool in detecting oil-water contact in a carbonate reservoir

Detection of Oil-Water Contacts (OWCs) is one of the primary tasks before evaluation of reservoir’s hydrocarbon in place, determining net pay zones and suitable depths for perforation operation. This paper introduces Bayesian decision making tool as an effective technique in OWC detecting using wire line logs. To compare strengths of the suggested method in detecting OWC with conventional one, ...

متن کامل

The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

متن کامل

An Application of Linear Model in Small Area Estimationof Orange production in Fars province

Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012